CoqDSC.LambdaALEnvValidity

Require Import ErrorMonad.
Require Import Misc.
Require Import Environment.
Require Import Omega.
Require Import LibTactics.
Require Import List.
Require Import FunInd.
Import ListNotations.

Require Import LambdaAL.
Require Import LambdaALValues.
Require Import LambdaALOperationalSemantics.
Require Import LambdaALOperationalSemanticsProofs.
Require Import LambdaALDerive.
Require Import LambdaALValidity.

The following relation represents values and change values that are related at every level of precision.
Definition rel_value v dv v' := forall k, drel_value k v dv v'.
Definition rel_env env denv env' := forall n, drel_env n env denv env'.

Inductive valid_denvironment : denvironment -> Prop :=
| ValidNil:
    valid_denvironment nil

| ValidCons:
    forall denv v dv v',
      valid_denvironment denv ->
      move v dv = Some v' ->
      (forall denv' dt',
          dv = dClosure denv' dt' ->
          let env' := values_of_list list_of_closure_denvironment denv' in
          v = Closure env' (underive dt')
          /\ valid_denvironment (denvironment_of_closure_denvironment denv')
      ) ->
      valid_denvironment (bind denv (v, dv)).

Definition valid_closure_changes v dv :=
  (forall denv' dt',
      dv = dClosure denv' dt' ->
      let env' := values_of_list list_of_closure_denvironment denv' in
      v = Closure env' (underive dt')
      /\ valid_denvironment (denvironment_of_closure_denvironment denv')
  ).

Lemma valid_denvironment_lookup_moves_well:
  forall denv,
    valid_denvironment denv ->
    forall x v dv, lookup denv x = Some (v, dv) ->
    exists v', move v dv = Some v'.
Proof.
  intros * Henv. induction Henv; intros.
  simpl in H. unfold error in H. congruence.
  destruct x. destruct n.
  simpl in . inversion . subst. eexists. eauto.
  simpl in . eapply IHHenv; eauto.
Qed.


Lemma valid_denvironment_lookups_moves_well:
  forall denv,
    valid_denvironment denv ->
    forall x vdv, lookups denv x = Some vdv ->
             let v := List.map fst vdv in
             let dv := List.map snd vdv in
    exists v', move_values (values_of_list v) (ldvalues_of_list dv) = Some v'.
Proof.
  intros * Henv. induction x; simpl in * |- *; intros.
  inversion H. subst. simpl. eexists. eauto.
  case_eq (lookups denv x); intros * Heq.
  case_eq (lookup denv a); intros * Heq'.
  rewrite Heq in * |- *. rewrite Heq' in * |- *. simpl in H.
  destruct p. simpl in * |- *. inverse H.
  simpl.
  edestruct IHx. eauto.
  destruct (valid_denvironment_lookup_moves_well _ Henv _ _ _ Heq').
  rewrite . simpl.
  eexists; intuition.
  rewrite . simpl. eauto.
  rewrite Heq' in H. simpl in H. rewrite Heq in H. simpl in H. congruence.
  rewrite Heq in H. simpl in H. congruence.
Qed.


Lemma valid_denvironment_moves_well:
  forall denv,
    valid_denvironment denv ->
    exists env', move_environment (values_of_list denv ) denv = Some env'.
Proof.
  intros denv Henv.
  induction Henv.
  - exists VNil. simpl. auto.
  - destruct IHHenv. exists (VCons v' x).
    simpl. rewrite H. rewrite .
    simpl. auto.
Qed.


Lemma valid_denvironment_contains_ok_closure:
  forall { denv },
    valid_denvironment denv ->
    forall { f v denv' dt' },
    lookup denv f = Some (v, dClosure denv' dt') ->
    valid_closure_changes v (dClosure denv' dt').
Proof.
  intros * Henv. induction Henv; intros.
  simpl in H. unfold error in H. congruence.
  destruct f. destruct n.
  simpl in . inversion . subst.
  unfold ret in . destruct ; inversion ; try congruence; intuition; eauto.
  simpl in .
  eapply IHHenv; eauto.
Qed.


Theorem lookup_env_of_denv:
  forall { denv v dv x },
    lookup denv x = Some (v, dv) ->
    lookup denv x = Some v.
Proof.
  induction denv; simpl; unfold ret, error; intros; try congruence; eauto.
  destruct x. destruct n; eauto. destruct a. simpl. congruence.
Qed.


Theorem lookup_move_environment:
  forall { x denv v dv env' },
    lookup denv x = Some (v, dv) ->
    move_environment (values_of_list denv ) denv = Some env' ->
    exists v', lookup (list_of_values env') x = Some v' /\ move v dv = Some v'.
Proof.
  introv Hlookup_x_denv Hmove.
  gen env'.
  functional induction (lookup denv x); inversion Hlookup_x_denv; subst; introv Hmove; destruct env';
    try destruct as [ ];
    apply inv_success_mbind2 in Hmove; unfold ret in Hmove;
      inversion_clear Hmove as [ x [ Heq Hmove' ] ]; apply inv_success_mbind2 in Hmove';
           inversion_clear Hmove' as [ x' [ Heq' Hmove'' ] ]; inverts Hmove''.
  - exists . auto.
  - apply IHo; auto.
Qed.


(*
  Switch around quantifiers to help inversion on the result.
  In the input, we get for each step-index k, an inductive proof that the environments match at depth n.
  In the result, we get an inductive proof that for each step-index k, the environments match at depth k. *)


Lemma invert_rel_env:
  forall E dE E', rel_env E dE E' -> pre_drel_env (rel_value) E dE E'.
Proof.
  intro.
  induction E; destruct dE; destruct E'; introv Hrel; lets : Hrel 1; inverts ; subst; constructor.
  - intro k.
    lets Hrel__k : Hrel k.
    inversion Hrel__k; auto.
  - apply IHE.
    intro n.
    lets Hrel__n : Hrel n.
    inverts Hrel__n; auto.
Qed.


Lemma original_environment_under_rel_env:
  forall E dE E', rel_env E dE E' -> dE = E.
Proof.
  introv Hrel.
  lets Hrel__alt: invert_rel_env Hrel.
  clear Hrel.
  induction Hrel__alt; auto.
  - simpl. fequals.
Qed.


Lemma modified_environment_under_rel_env:
  forall E dE E', rel_env E dE E' -> dE = Some E'.
Proof.
  introv Hrel.
  apply invert_rel_env in Hrel.
  induction Hrel. auto.
  - unfold modified_environment in IHHrel |- *; simpl. rewrite IHHrel.
    lets Hvmove : @drel_value_move_value 1 (H 1); auto. rewrite Hvmove.
    reflexivity.
Qed.


(* Lemma rel_env_original_and_modified_env: *)
(*   forall dE E', *)
(*     ⌈ dE ⌉ = Some E' -> *)
(*     rel_env ⌊ dE ⌋ dE E'. *)
(* Proof. *)
(*   intros * HE'. intro n. *)
(*   unfold drel_env.  *)

Lemma rel_env_lookup_value':
  forall {E dE E' v x dv},
    rel_env E dE E' ->
    Environment.lookup E x = Some v ->
    Environment.lookup dE x = Some (, dv) ->
     = v.
Proof.
  introv Hrel.
  apply invert_rel_env in Hrel.
  destruct x as [n].
  gen n.
  induction Hrel; introv HlookE HlookdE.
  - inverts HlookE.
  - induction n; inverts HlookE; inverts HlookdE; eauto.
Qed.


Lemma rel_env_lookup_value:
  forall {E dE E' v x dEu Eu Eu' dv},
    rel_env (Eu ++ E) (dEu ++ dE) (Eu' ++ E') ->
    Environment.lookup (Eu ++ E) x = Some v ->
    Environment.lookup (dEu ++ dE) x = Some (, dv) ->
     = v.
  eauto using rel_env_lookup_value'.
Qed.

Require Import LambdaALFundamentalProperty.

Lemma rel_env_through_context_evaluation:
  forall ctx E dE E' Eu Eu' dEu,
    rel_env E dE E' ->
    [ E ctx Eu ] ->
    [ E' ctx Eu' ] ->
    [[ dE derive ctx dEu ]] ->
    rel_env (Eu ++ E) (dEu ++ dE) (Eu' ++ E').
Proof.
  induction ctx; intros * Hrelenv Hoeval Hmeval Hdeval;
    inverse Hoeval; inverse Hmeval; inverse Hdeval; simpl; eauto;
      intro k; do 3 rewrite <- app_assoc; simpl; eapply IHctx;
        try intro k'; eauto.
  - assert ( = ).
    erewrite (original_environment_under_rel_env E dE E' Hrelenv) in .
    eapply deterministic_eval; eauto. subst.
    eapply DrelCons.
    destruct (sound_eval _ _ _ ) as [ k'' Heval ].
    generalize (fundamental_lemma (@(v, )) _ _ _ _ (Hrelenv (k' + k'' + 1))).
    rewrite unfold_drel_term. unfold drel_term_F. intro Hrel.
    assert (Hk'' : k'' < k' + k'' + 1) by omega.
    destruct (Hrel k'' Hk'' _ Heval _ ). intuition.
    assert (x = dv). eapply deterministic_deval; eauto. subst.
    eapply (drel_value_antimonotonic _ _ _ ); eauto.
    eapply Hrelenv; eauto.

  - erewrite (original_environment_under_rel_env E dE E' Hrelenv) in .
    assert (l = xs). eapply reverse_map; eauto. intros. congruence. subst.
    assert (v = ). eapply deterministic_eval; eauto. subst.
    eapply DrelCons.
    destruct (sound_eval _ _ _ ) as [ k'' Heval ].
    generalize (fundamental_lemma (ttuple xs) _ _ _ _ (Hrelenv (k' + k'' + 1))).
    rewrite unfold_drel_term. unfold drel_term_F. intro Hrel.
    assert (Hk'' : k'' < k' + k'' + 1) by omega.
    destruct (Hrel k'' Hk'' _ Heval _ ). intuition.
    assert (x = dv). eapply deterministic_deval; eauto. subst.
    eapply (drel_value_antimonotonic _ _ _ ); eauto.
    eapply Hrelenv; eauto.

   Unshelve. all: omega.
Qed.


Lemma rel_env_length:
  forall E dE E', rel_env E dE E' -> length E = length dE /\ length E' = length dE.
Proof.
  intros.
  assert (E = dE ). erewrite original_environment_under_rel_env; eauto.
  unfold original_environment in . subst. rewrite map_length.
  assert ( dE = Some E'). erewrite modified_environment_under_rel_env; eauto.
  unfold modified_environment in . rewrite (list_map_length _ _ _ ).
  eauto.
Qed.


Lemma rel_env_lookup_change:
  forall E dE E' x v,
    rel_env E dE E' ->
    lookup E x = Some v ->
    exists dv, lookup dE x = Some (v, dv).
Proof.
  intros. rewrite <- (original_environment_under_rel_env _ _ _ H) in .
  unfold original_environment in .
  destruct (map_lookup_2 ). exists (snd ). destruct . simpl in * |- *. intuition. subst.
  eauto.
Qed.