CoqDSC.ErrorMonad
(****************)
(* Error monad. *)
(****************)
Require Import List.
Definition t A := option A.
Definition ret {A : Type} (x : A) := Some x.
Definition mbind {A B : Type} (a : option A) (f : A -> option B) : option B :=
match a with
| Some x => f x
| None => None
end.
Notation "A >>= F" :=
(mbind A F)
(at level 42, left associativity).
Notation "X '<-' A ';' B" :=
(mbind A (fun X => B))
(at level 81, A at level 100, B at level 200, right associativity).
Definition error {A} := None (A:=A).
Fixpoint list_map {A B: Type} (f : A -> t B) (l : list A) : t (list B) :=
match l with
| nil =>
ret nil
| cons x xs =>
y <- f x;
ys <- list_map f xs;
ret (cons y ys)
end.
Fixpoint list_map2 {A B C: Type} (f : A -> B -> t C) (l : list A) (l' : list B)
: t (list C) :=
match l, l' with
| nil, nil =>
ret nil
| cons x xs, cons y ys =>
z <- f x y;
zs <- list_map2 f xs ys;
ret (cons z zs)
| _, _ =>
error
end.
Lemma inv_success_mbind:
forall {A B} {f : A -> t B} {c : t A} {x},
mbind c f = Some x ->
exists y, c = Some y.
Proof.
intros.
destruct c; simpl in * |-; try congruence.
exists a. auto.
Qed.
Lemma inv_success_mbind2:
forall {A B} {f : A -> option B} {c} {x},
mbind c f = Some x ->
exists y, c = Some y /\ f y = Some x.
Proof.
intros * H.
destruct c; simpl in * |-; try congruence.
exists a. auto.
Qed.
Lemma inv_error_mbind:
forall {A B} (c : t A),
(_ <- c; @error B) = error.
Proof.
intros.
destruct c; simpl; auto.
Qed.
Lemma inv_error_mbind2:
forall {A B} {c : t A} (f : A -> B),
mbind c (fun x => ret (f x)) = error ->
c = error.
Proof.
destruct c; simpl; intros; unfold ret, error in * |- *; try congruence; eauto.
Qed.
Lemma list_map_length:
forall {A B} (f : A -> t B) l l',
list_map f l = Some l' ->
List.length l = List.length l'.
Proof.
induction l; intros * Hm; destruct l'; simpl in * |- *; inversion Hm; eauto.
destruct (inv_success_mbind Hm). rewrite H in Hm. simpl in Hm.
destruct (inv_success_mbind Hm). rewrite H1 in Hm. simpl in Hm.
inversion Hm.
destruct (inv_success_mbind Hm). rewrite H in Hm. simpl in Hm.
destruct (inv_success_mbind Hm). rewrite H1 in Hm. simpl in Hm.
inversion Hm; subst.
erewrite IHl; eauto.
Qed.
Lemma commute_bind:
forall {A B C} (c1 : t A) (c2 : t B) (f : A -> B -> C),
(x <- c1; y <- c2; ret (f x y)) =
(y <- c2; x <- c1; ret (f x y)).
Proof.
intros.
destruct c1; destruct c2; simpl; auto.
Qed.
Lemma bind_ret:
forall {A} (c : t A),
(x <- c; ret x) = c.
Proof.
destruct c; simpl; eauto.
Qed.
Lemma assoc_bind:
forall {A} {c1 : t A} {B} {c2 : t B} {C} {c3 : t C},
(x <- (y <- c1; c2); c3) = (y <- c1; x <- c2; c3).
Proof.
intros.
destruct c1; destruct c2; simpl; auto.
Qed.
Lemma list_map_app:
forall {A B} (f : A -> t B) (l l': list A),
list_map f (l ++ l') =
(x <- list_map f l; y <- list_map f l'; ret (x ++ y)).
Proof.
induction l; intros; simpl in * |- *; eauto.
rewrite bind_ret; eauto.
destruct (f a); simpl. rewrite IHl.
destruct (list_map f l); destruct (list_map f l'); eauto.
eauto.
Qed.
Lemma list_map_cons:
forall {A B} (f : A -> t B) (x : A) (l : list A) bs b,
list_map f l = Some bs ->
f x = Some b ->
list_map f (cons x l) = Some (b :: bs).
Proof.
simpl. intros.
rewrite H. rewrite H0. simpl. eauto.
Qed.
Lemma list_map_post_cons:
forall {A B} (f : A -> t B) (x : A) (l : list A) bs b,
list_map f l = Some bs ->
f x = Some b ->
list_map f (l ++ cons x nil) = Some (bs ++ cons b nil).
Proof.
simpl. intros.
rewrite list_map_app. rewrite H. simpl.
rewrite H0. simpl.
auto.
Qed.
Ltac simpl_unfold_err :=
repeat (unfold ret, error in *; simpl in *).
Ltac simpl_unfold_err_mbind :=
repeat (unfold ret, error, mbind in *; simpl in *).
(* Use inv_success_mbind2 to help inversion. *)
Ltac inv_mbind :=
match goal with
H : mbind _ _ = Some _ |- _ =>
let x := fresh "x" in
let Ha := fresh "Ha" in
let Hb := fresh "Hb" in
apply inv_success_mbind2 in H;
(* invert, in one go, H into its pieces *)
inversion H as [x [Ha Hb] ]
end.
Require Import Misc.
Ltac inv_mbind_some :=
repeat inv_mbind; repeat injections_some.
Ltac simpl_inv_mbind_some := simpl_unfold_err; inv_mbind_some.
(* Error monad. *)
(****************)
Require Import List.
Definition t A := option A.
Definition ret {A : Type} (x : A) := Some x.
Definition mbind {A B : Type} (a : option A) (f : A -> option B) : option B :=
match a with
| Some x => f x
| None => None
end.
Notation "A >>= F" :=
(mbind A F)
(at level 42, left associativity).
Notation "X '<-' A ';' B" :=
(mbind A (fun X => B))
(at level 81, A at level 100, B at level 200, right associativity).
Definition error {A} := None (A:=A).
Fixpoint list_map {A B: Type} (f : A -> t B) (l : list A) : t (list B) :=
match l with
| nil =>
ret nil
| cons x xs =>
y <- f x;
ys <- list_map f xs;
ret (cons y ys)
end.
Fixpoint list_map2 {A B C: Type} (f : A -> B -> t C) (l : list A) (l' : list B)
: t (list C) :=
match l, l' with
| nil, nil =>
ret nil
| cons x xs, cons y ys =>
z <- f x y;
zs <- list_map2 f xs ys;
ret (cons z zs)
| _, _ =>
error
end.
Lemma inv_success_mbind:
forall {A B} {f : A -> t B} {c : t A} {x},
mbind c f = Some x ->
exists y, c = Some y.
Proof.
intros.
destruct c; simpl in * |-; try congruence.
exists a. auto.
Qed.
Lemma inv_success_mbind2:
forall {A B} {f : A -> option B} {c} {x},
mbind c f = Some x ->
exists y, c = Some y /\ f y = Some x.
Proof.
intros * H.
destruct c; simpl in * |-; try congruence.
exists a. auto.
Qed.
Lemma inv_error_mbind:
forall {A B} (c : t A),
(_ <- c; @error B) = error.
Proof.
intros.
destruct c; simpl; auto.
Qed.
Lemma inv_error_mbind2:
forall {A B} {c : t A} (f : A -> B),
mbind c (fun x => ret (f x)) = error ->
c = error.
Proof.
destruct c; simpl; intros; unfold ret, error in * |- *; try congruence; eauto.
Qed.
Lemma list_map_length:
forall {A B} (f : A -> t B) l l',
list_map f l = Some l' ->
List.length l = List.length l'.
Proof.
induction l; intros * Hm; destruct l'; simpl in * |- *; inversion Hm; eauto.
destruct (inv_success_mbind Hm). rewrite H in Hm. simpl in Hm.
destruct (inv_success_mbind Hm). rewrite H1 in Hm. simpl in Hm.
inversion Hm.
destruct (inv_success_mbind Hm). rewrite H in Hm. simpl in Hm.
destruct (inv_success_mbind Hm). rewrite H1 in Hm. simpl in Hm.
inversion Hm; subst.
erewrite IHl; eauto.
Qed.
Lemma commute_bind:
forall {A B C} (c1 : t A) (c2 : t B) (f : A -> B -> C),
(x <- c1; y <- c2; ret (f x y)) =
(y <- c2; x <- c1; ret (f x y)).
Proof.
intros.
destruct c1; destruct c2; simpl; auto.
Qed.
Lemma bind_ret:
forall {A} (c : t A),
(x <- c; ret x) = c.
Proof.
destruct c; simpl; eauto.
Qed.
Lemma assoc_bind:
forall {A} {c1 : t A} {B} {c2 : t B} {C} {c3 : t C},
(x <- (y <- c1; c2); c3) = (y <- c1; x <- c2; c3).
Proof.
intros.
destruct c1; destruct c2; simpl; auto.
Qed.
Lemma list_map_app:
forall {A B} (f : A -> t B) (l l': list A),
list_map f (l ++ l') =
(x <- list_map f l; y <- list_map f l'; ret (x ++ y)).
Proof.
induction l; intros; simpl in * |- *; eauto.
rewrite bind_ret; eauto.
destruct (f a); simpl. rewrite IHl.
destruct (list_map f l); destruct (list_map f l'); eauto.
eauto.
Qed.
Lemma list_map_cons:
forall {A B} (f : A -> t B) (x : A) (l : list A) bs b,
list_map f l = Some bs ->
f x = Some b ->
list_map f (cons x l) = Some (b :: bs).
Proof.
simpl. intros.
rewrite H. rewrite H0. simpl. eauto.
Qed.
Lemma list_map_post_cons:
forall {A B} (f : A -> t B) (x : A) (l : list A) bs b,
list_map f l = Some bs ->
f x = Some b ->
list_map f (l ++ cons x nil) = Some (bs ++ cons b nil).
Proof.
simpl. intros.
rewrite list_map_app. rewrite H. simpl.
rewrite H0. simpl.
auto.
Qed.
Ltac simpl_unfold_err :=
repeat (unfold ret, error in *; simpl in *).
Ltac simpl_unfold_err_mbind :=
repeat (unfold ret, error, mbind in *; simpl in *).
(* Use inv_success_mbind2 to help inversion. *)
Ltac inv_mbind :=
match goal with
H : mbind _ _ = Some _ |- _ =>
let x := fresh "x" in
let Ha := fresh "Ha" in
let Hb := fresh "Hb" in
apply inv_success_mbind2 in H;
(* invert, in one go, H into its pieces *)
inversion H as [x [Ha Hb] ]
end.
Require Import Misc.
Ltac inv_mbind_some :=
repeat inv_mbind; repeat injections_some.
Ltac simpl_inv_mbind_some := simpl_unfold_err; inv_mbind_some.