CoqDSC.Misc
General purpose definitions, lemmas and tactics.
Require Import Omega.
Lemma lt_comp :
forall {n j1 j2 k}, j1 + j1 + j2 <= k -> k < n -> k - j1 - j1 - j2 < n.
Proof.
intros. omega.
Qed.
Lemma lt_lt:
forall {n j k}, j <= k -> k < n -> j < n.
Proof.
intros. omega.
Qed.
Lemma minus_commute:
forall a b c,
c <= a - b ->
b <= a - c ->
a - b - c = a - c - b.
Proof.
intros. omega.
Qed.
Lemma minus_factorize:
forall a b c,
b + c <= a ->
a - b - c = a - (b + c).
Proof.
intros. omega.
Qed.
Lemma uniq_commute:
forall A,
forall (P : A -> nat -> Prop),
(forall x y z z', P x z -> P y z' -> x = y) ->
(forall z, exists y, P y z) ->
(exists y, forall z, P y z).
Proof.
intros.
destruct (H0 O).
exists x.
intro z.
destruct (H0 z).
rewrite (H x x0 0 z H1 H2); auto.
Qed.
Require Import List.
Lemma reverse_map:
forall A B (f : A -> B) (Hfinj : forall x y, f x = f y -> x = y),
forall l1 l2, map f l1 = map f l2 -> l1 = l2.
Proof.
induction l1; destruct l2; simpl in * |- *; try congruence; intros.
assert (a = a0). apply Hfinj. congruence.
assert (l1 = l2). apply IHl1; congruence.
subst. auto.
Qed.
Theorem map_map:
forall A B C (f : A -> B) (g : C -> A) xs, map f (map g xs) = map (fun x => f (g x)) xs.
Proof.
induction xs; simpl; intros; auto. rewrite IHxs. auto.
Qed.
Lemma map_equiv:
forall A B l (f : A -> B) (g : A -> B), (forall x, f x = g x) -> List.map f l = List.map g l.
Proof.
induction l; simpl; eauto. intros.
rewrite H. erewrite IHl. eauto. auto.
Qed.
Lemma map_id:
forall A (l : list A), map (fun x => x) l = l.
Proof.
induction l; simpl; eauto.
rewrite IHl. auto.
Qed.
Lemma map_equiv_length:
forall {A B C l l'} {f : A -> B} {g : C -> B},
List.map f l = List.map g l' ->
List.length l = List.length l'.
Proof.
induction l; intros * Heq; destruct l'; simpl in * |- *; inversion Heq; try congruence; eauto.
Qed.
Lemma eq_dec_nat_refl:
forall x, PeanoNat.Nat.eq_dec x x = left (refl_equal x).
Proof.
induction x; simpl; auto. rewrite IHx. auto.
Qed.
Fixpoint drop {A} n (l : list A) :=
match n with
| O => l
| S k => match l with
| nil => nil
| x :: xs => drop k xs
end
end.
Fixpoint take {A} n (l : list A) :=
match n with
| O => nil
| S k => match l with
| nil => nil
| x :: xs => x :: take k xs
end
end.
Lemma drop_app: forall {A} {l : list A} {l'},
drop (length l) (l ++ l') = l'.
Proof.
induction l; simpl; eauto.
Qed.
Lemma drop_nil: forall {A} n,
drop n (@nil A) = nil.
Proof.
induction n; simpl; eauto.
Qed.
Lemma drop_inversion: forall {A x} {l l' : list A} {n},
drop n l = x :: l' ->
n < length l.
Proof.
induction l; simpl; intros; eauto.
rewrite drop_nil in H. congruence.
destruct n. omega.
simpl in H. generalize (IHl _ _ H). omega.
Qed.
Lemma take_drop: forall {A n} {l : list A},
take n l ++ drop n l = l.
Proof.
induction n; simpl; eauto.
intros. destruct l.
simpl. eauto.
rewrite <- app_comm_cons.
rewrite IHn. eauto.
Qed.
Lemma drop_decompose:
forall {A} {x : A} {l l' n},
drop n l = x :: l' ->
exists p, l = p ++ x :: l' /\ length p = n.
Proof.
induction l; simpl; intros; eauto.
rewrite drop_nil in H. congruence.
destruct n. simpl in H.
inversion H. subst.
exists nil. intuition.
simpl in H. destruct (IHl _ _ H). intuition. subst.
exists (a :: x0).
intuition.
Qed.
Lemma drop_cons: forall {A} x {l l' : list A} n,
drop n l = x :: l' ->
drop (S n) l = l'.
Proof.
intros. destruct (drop_decompose H).
intuition. subst.
replace (x :: l') with (cons x nil ++ l').
replace (S (length x0)) with (length (x0 ++ (x :: nil))).
rewrite app_assoc.
rewrite drop_app; eauto.
rewrite app_length. simpl. omega.
eauto.
Qed.
Lemma app_comm_cons_2:
forall {A} (l : list A) l' x,
l ++ x :: l' = (l ++ x :: nil) ++ l'.
Proof.
induction l; simpl; intros; eauto.
rewrite IHl. eauto.
Qed.
Lemma rev_injective:
forall {A} (l l' : list A), rev l = rev l' -> l = l'.
Proof.
intros.
assert (length (rev l) = length (rev l')). rewrite H. auto.
generalize H H0. generalize l'. clear H H0 l'.
induction l; intros; destruct l'; simpl in * |- *; intros; try rewrite app_length in H0;
try (easy; simpl in * |- *; omega).
simpl in H0. omega.
simpl in H0. omega.
destruct (app_inj_tail _ _ _ _ H). subst. rewrite (IHl _ H1); eauto.
rewrite H1. auto.
Qed.
Lemma rev_nil:
forall {A} (l : list A), rev l = nil -> l = nil.
Proof.
intros * Hrev.
replace (@nil A) with (@rev A (@nil A)) in Hrev; eauto.
apply rev_injective; eauto.
Qed.
Lemma tl_app:
forall {A} (l : list A) x l',
tl ((l ++ x :: nil) ++ l') = tl (l ++ x :: nil) ++ l'.
Proof.
destruct l; simpl; eauto; intros.
Qed.
Lemma length_tl:
forall {A} (l : list A) x,
length (tl (l ++ x :: nil)) = length l.
Proof.
destruct l; simpl; eauto; intros.
rewrite app_length. simpl. omega.
Qed.
Ltac easy := (intuition; simpl in * |- *; try congruence; eauto).
Ltac easy_assert H := (assert H by easy).
Ltac easy_eqs H := (match H with
| ?X = ?Y /\ ?H' => easy_assert (X = Y); subst; easy_eqs H'
| ?H' => easy_assert H'; subst
end).
Ltac inverse H := (inversion H; subst).
Ltac use H := (eapply H; easy).
Ltac break H := (destruct H; intuition).
Ltac remark_by H := (generalize H; intro). (* FIXME: Give a name. *)
(* PG: Try case-splitting to simplify and invert hypotheses. *)
(* https://stackoverflow.com/a/28458457/53974 gives: *)
(* Ltac match_case_analysis := *)
(* repeat *)
(* match goal with *)
(* | H : match ?x with _ => _ end = _ |- _ => *)
(* destruct x; try solve inversion H *)
(* end. *)
Ltac match_case_analysis :=
repeat
match goal with
| H : context f [match ?x with _ => _ end] |- _ =>
destruct x; try solve [inverse H]
end.
Ltac match_case_analysis_eauto :=
repeat
match goal with
| H : context f [match ?x with _ => _ end] |- _ =>
destruct x; try solve [inverse H; eauto]
end.
(* Try automatic inversion on hypotheses matching Some to Some, in a few variants.
* I use these variants depending on the scenario; they are needed because no
* inversion tactic is too robust.
*)
Ltac inverse_some :=
(* Below, using inversion instead of inversion_clear reduces the
danger of destroying information and producing false goals, but
means that repeat inverse_some will loop! *)
match goal with
| H : Some ?x = Some ?y |- _ => inversion_clear H; subst
end.
Ltac inverts_some :=
match goal with
| H : Some ?x = Some ?y |- _ => inversion H; subst; clear H
end.
Ltac inversions_some :=
match goal with
| H : Some ?x = Some ?y |- _ => inversion H; subst
end.
(* From Chlipala's tactics. *)
Ltac inject H := injection H; clear H; intros; try subst.
(* More reliable (?) variant of inversions_some. *)
Ltac injections_some :=
match goal with
[H : Some ?a = Some ?b |- _ ] => inject H
end.
(* Much cheaper than intuition, often as good, but produces different hypotheses names! *)
Ltac splitHyps :=
repeat match goal with
| H: exists _, _ |- _ => destruct H
| H: _ /\ _ |- _ => destruct H
end.
(* Split in the goal. *)
Ltac split_conj :=
repeat
match goal with
| |- _ /\ _ => split
end.